Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 6(5): 1447-56, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27087924

RESUMO

Our objective was to estimate and analyze the body-size distribution parameters of terrestrial mammal assemblages at different spatial scales, and to determine whether these parameters are controlled by local ecological processes or by larger-scale ones. Based on 93 local assemblages, plus the complete mammal assemblage from three continents (Africa, North, and South America), we estimated three key distribution parameters (diversity/size slope, skewness, and modal size) and compared the values to those expected if size distributions are mainly controlled by local interactions. Mammal diversity decreased much faster as body size increased than predicted by fractal niche theory, both at continental and at local scales, with continental distributions showing steeper slopes than the localities within them. South America showed a steeper slope (after controlling for species diversity), compared to Africa and North America, at local and continental scales. We also found that skewness and modal body size can show strikingly different correlations with predictor variables, such as species richness and median size, depending on the use of untransformed versus log-transformed data, due to changes in the distribution density generated by log-transformation. The main differences in slope, skewness, and modal size between local and continental scales appear to arise from the same biogeographical process, where small-sized species increase in diversity much faster (due to higher spatial turnover rates) than large-sized species. This process, which can operate even in the absence of competitive saturation at local scales, generates continental assemblages with steeper slopes, smaller modal sizes, and higher right skewness (toward small-sized species) compared to local communities. In addition, historical factors can also affect the size distribution slopes, which are significantly steeper, in South American mammal assemblages (probably due to stronger megafauna extinction events in South America) than those in North America and Africa.

2.
PLoS One ; 10(12): e0145699, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696089

RESUMO

The factors responsible for the formation of Amazonian primate communities are not well understood. Here we investigated the influence of interspecific competition in the assembly of these communities, specifically whether they follow an assembly rule known as "favored states". According to this rule, interspecific competition influences final species composition, resulting in functional groups that are equally represented in the community. We compiled presence-absence data for primate species at 39 Amazonian sites in Brazil, contrasting two regions with distinct productivity regimes: the eutrophic Juruá River basin and the oligotrophic Negro River basin. We tested two hypotheses: that interspecific competition is a mechanism that influences the structure of Amazonian primate communities, and that competition has had a greater influence on the structure of primate communities in regions with low productivity, where resources are more limited. We used null models to test the statistical significance of the results, and found a non-random pattern compatible with the favored states rule in the two regions. Our findings suggest that interspecific competition is an important force driving primate community assembly regardless of productivity regimes.


Assuntos
Ecossistema , Modelos Biológicos , Primatas/fisiologia , Animais , Brasil
3.
PLoS One ; 9(8): e105205, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25133497

RESUMO

In this paper, we address the question of what proportion of biodiversity is represented within protected areas. We assessed the effectiveness of different protected area types at multiple scales in representing primate biodiversity in the Brazilian Legal Amazon. We used point locality data and distribution data for primate species within 1°, 0.5°, and 0.25° spatial resolution grids, and computed the area of reserves within each cell. Four different approaches were used - no reserves (A), exclusively strict use reserves (B), strict and sustainable use reserves (C), and strict and sustainable use reserves and indigenous lands (D). We used the complementarity concept to select reserve networks. The proportions of cells that were classified as reserves at a grid resolution of 1° were 37%, 64%, and 88% for approaches B, C and D, respectively. Our comparison of these approaches clearly showed the effect of an increase in area on species representation. Representation was consistently higher at coarser resolutions, indicating the effect of grain size. The high number of irreplaceable cells for selected networks identified based on approach A could be attributed to the use of point locality occurrence data. Although the limited number of point occurrences for some species may have been due to a Wallacean shortfall, in some cases it may also be the result of an actual restricted geographic distribution. The existing reserve system cannot be ignored, as it has an established structure, legal protection status, and societal recognition, and undoubtedly represents important elements of biodiversity. However, we found that strict use reserves (which are exclusively dedicated to biodiversity conservation) did not effectively represent primate species. This finding may be related to historical criteria for selecting reserves based on political, economic, or social motives.


Assuntos
Primatas , Animais , Biodiversidade , Brasil , Conservação dos Recursos Naturais , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...